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An efficient method of constructing inviscid Batchelor-model flows is developed. The 
method is based on an analytic continuation of the potential part of the flow into 
the closed-streamline vortex region. Numerical solutions are presented for Batchelor- 
model flows past airfoils with cavities. With the airfoil and dividing streamline shape, 
the eddy vorticity, and the jump in the Bernoulli constant across the eddy boundary 
given, the program calculates the corresponding cavity shape and the entire flow. 

1. Introduction 
Inviscid Batchelor-model flow is a plane steady flow of incompressible fluid past 

a body with vorticity that is constant inside and zero outside the region of closed 
streamlines. As the eddy boundary is a streamline and the flow is inviscid, the 
tangential velocity component may be discontinuous at this boundary, while the 
pressure is continuous. Flows of this type have been of interest since Batchelor (1956 a) 
gave an accurate proof of the theorem first formulated by Prandtl (1904). According 
to this theorem, if an inviscid flow with a region of closed streamlines is a high- 
Reynolds-number limit of a viscous flow, then inside that region the vorticity is 
constant. On the basis of this theorem Batchelor (1956 b)  proposed his famous model 
of separated flow past a body. Calculations of various inviscid Batchelor-model flows 
are described in many papers. In particular it is worth mentioning the recent works 
of Moore, Saffman & Tanveer (1988), Turfus (1993), Chernyshenko (1993), the first 
calculation (Shabat 1963) of the flow which became later widely known due to the 
paper of Sadovskii (1971), and the book by Gol'dshtik (1981) where many of the 
earlier works were reviewed. Further references on inviscid Batchelor-model flows 
can be found in these works. 

For high-Reynolds-number asymptotics of viscous flows it should be noted, how- 
ever, that in the case of flows past bluff bodies there are strong objections to use 
of the Batchelor model (Smith 1979; Chernyshenko 1984). When the self-consistent 
high-Re asymptotics of the flow past a bluff body was calculated (Chernyshenko 1988; 
Chernyshenko & Castro 1993) it turned out to be not of the Batchelor-model type. In 
other cases, such as the flow past a cavity, the Batchelor model can probably describe 
the high-Re asymptotics of viscous flows provided that certain severe restrictions on 
the body shape (Chernyshenko 1991) are satisfied. Otherwise the limiting flow is 
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not of the Batchelor-model type. Therefore, to study the Batchelor model, the best 
formulation is an inverse one: to find a body to which the Batchelor model applies. 

Generally, for a body of a given shape there is a two-parameter family of inviscid 
Batchelor-model flows. Presumably, only one member of this family may be the 
high-Re limit of the corresponding viscous flow. Naturally, this member must be 
found from an analysis involving viscosity effects: namely, an analysis of the flow in 
the near vicinity of the separation point and an analysis of the cyclic boundary layer 
surrounding the eddy are usually expected to give two required conditions. However, 
in the case of an inverse formulation not only the body shape may be adjusted: for 
example, blowing or suction within the boundary layer may be applied to change the 
position of the separation point or the value of the vorticity in the eddy. Therefore it 
makes sense to calculate the entire family of inviscid flows. 

Inviscid Batchelor-model flows are also of interest for another reason. They often 
have qualitatively correct streamline patterns and, regardless of any asymptotic con- 
siderations, can sometimes be convenient for an approximate description of realistic 
(including turbulent) flows. In particular, the Batchelor model may be a reasonable 
compromise between accuracy and simplicity for describing flows with trapped vor- 
tices, that is with massive vortices remaining in the vicinity of a body instead of being 
shed periodically (or chaotically) into the wake. Vortices of this type can considerably 
improve the performance characteristics of airfoils and diffusers, but stabilizing such 
vortices is a very difficult problem (Wu & Wu 1992; Chernyshenko 1995). Since for 
vortex stabilization the body shape must be designed specifically, an inverse approach 
may also be useful in this case. 

A distinguishing feature of the general method of constructing inviscid Batchelor- 
model flows, which is described in what follows, is that part of the body shape 
is determined from the solution of the problem. The exact formulation of the 
problem is given below. The particular requirements imposed on the body shape are 
different for the problems of high-Reynolds-number asymptotics of viscous flow and 
of stabilization of trapped vortices (and as yet unknown in the latter case). Discussing 
these requirements is outside the scope of the present paper. 

2. Problem formulation 
The cavity shape and the flow in figure 1, which illustrates the problem formulation, 

were calculated by the method explained in detail in the following sections. 
Let W = W ( z )  be a complex potential of the flow past a body. Here, z = x + iy, 

and x, y are the Cartesian coordinates. 
Let an auxiliary variable s be mapped conformally onto z by z = f(s) with f(s) 

given by an explicit expression. The real axis in the s-plane is mapped by z = f(s) onto 
a curve, which we will call a support curve. Let us assume that the portion of the body 
surface between points A and B coincides with a portion of the support curve. The 
rest of the support curve is shown in figure 1 with a broken line. In other words, this 
part of the body surface can be described in a parametric form as x = g(s), y = h(s) 
with real s, where g(s) and h(s) are analytic functions that take real values for real s 
and can be expressed by explicit formulae. Then f(s) = g(s) +ih(s). The mathematical 
formulation of the problem is to find the shape of the cavity which can be made in 
the body surface such that the following conditions are satisfied : 

(a )  the Batchelor-model flow with a closed streamline region inside the cavity 
coincides, outside, with the flow described by the complex potential W ;  

( b )  the dividing streamline begins at A, ends at B, and is described by the equa- 
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FIGURE 1. Cavity shape and flow streamlines for w = -0.25 and A = 1.1. 

tion z = f(s) with real s, that is, it coincides with the previously distinguished portion 
of the body surface; 

(c) the vorticity in the cavity and the jump in the Bernoulli constant across the 
eddy boundary (that is half of the jump in the velocity squared) equal the prescribed 
values of w and A respectively. 

For A = 0 and W given by an explicit expression this problem was solved by 
Abrashkin & Yakubovich (1988). 

As shown below, this problem reduces to an analytic continuation, and for this 
reason it is ill-posed in the sense that an arbitrary small variation in the shape of the 
dividing streamline may result in a finite change of the cavity shape. That is why the 
function f(s) was required to be expressed explicitly. It will be seen from the results 
below, for f(s) fixed, that if the solution exists then it is unique, and small variations 
in W result in small variations in the cavity shape. 

3. General solution and analysis 
Let us express the flow inside the cavity as the sum of a potential flow with 

potential w and a prescribed vortex flow with vorticity w. If the vorticity is given then 
the eventual result does not depend on the particular form of the vortex component of 
the flow. The formulae will be most concise if the vortex component is a rigid-body 
rotation. Then inside the cavity the flow velocity, with components denoted by u 
and v, takes the form 

(3.1) u - iv = w, - i w ~ ,  

where the overbar means, as usual, complex conjugation, and the prime means 
differentiation with respect to the subscript. Outside the cavity the velocity, with 
components denoted by U and I/, is given by the formula 

I '  

U-iV = W:. 

On the dividing streamline the velocity is directed along this line and the squares 
of the velocity inside and outside the cavity differ by 28. This can be expressed in the 
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- 
u - iu = -(I f4 U - iVI2 - 2A)’I2. 

Ifil 
Expressing w: in terms of this formula and (3.1), multiplying by fi, and substitut- 

ing z = f(s), we arrive at the expression 

( 3 4  
I 2  112 wi = i w f o f i  + (lW,’I2 - 2Alf,l ) . 

This relation is valid on the dividing streamline between points A and B, or, 
equivalently, on the corresponding segment [A,, B,] of the real axis in the s-plane. 
However, it cannot be used outside this segment because the right-hand side is not 
an analytic function of s while the left-hand side is an analytic function (because w(z) 
and z = f(s) are analytic functions). 

The main idea of our approach is to replace the right-hand side of (3.2) with an 
analytic function taking the same values on [A,, B,] as the right-hand side of (3.2). 
On this segment s = 3, and hence fo = fo. From the well-known property of 
analytic functions fo is an analytic function of s. Similarly, we may replace 1f;(s)l2 
with f;(s)f;(S). Notice now that Wi(s) is a complex-conjugated velocity of the flow 
that can be obtained by mapping conformally the flow in the z-plane onto the s-plane. 
The segment [As, B,] of the real axis is a streamline of this flow, and for this reason Wi 
takes real values on it, and, therefore, lW,’(s)I2 = Wi2(s) = Wi(s)W;(S) = W,l(S)’. The 
expression for the vortex flow velocity, which we are deriving, will be used inside the 
cavity, whereas the potential W is determined outside, that is, on the other side of 
the real axis. Hence the last of the equivalent representations for I Wi(s)I2 is the most 
appropriate. As a result, we obtain 

~ 

- -  

~ 112 
wi = iwfofi(s) + (m2 - ZAfi(s)fL(3)) . (3.3) 

Finally, multiplying this expression by s: and substituting into (3.1) gives the 
following expression for the complex-conjugated velocity of the vortex flow inside the 
cavity : 

Here, s = s(z) is a function inverse to f(s). Now the streamlines inside the cavity and, 
hence, the cavity shape can be found by integrating (3.4) numerically. 

The uniqueness of the solution obtained does not follow directly from (3.4), but its 
proof is now so simple that it is not reproduced here. 

Returning to the formulation and considering the result, it can be seen in what sense 
exactly the problem is ill-posed. From (3.4) it follows that the solution varies only 
slightly if the variation of W(s)  is small for all s such that f(s) lies inside the cavity. 
This will be the case if, for example, the body shape is changed slightly somewhere 
outside the portion between points A and B. We may say that the problem turns out 
to be well-posed with respect to variations of the external flow. 

However, the formulation of the problem involves f(s) only on [A,, B,] whereas (3.4) 
involves f(s) outside this segment also. As is well known, quite different analytic 
functions may take very similar values on a segment. For example, on a segment a 
function can be approximated with any degree of accuracy both with polynomials 
and with truncated Fourier series but outside the segment these approximations will 
differ from one another and from the approximated function. Therefore, a small 
variation in the shape of the dividing streamline may result in a considerable change 
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of the cavity shape. This is why the requirement of prescribing f(s) explicitly and, 
hence, with absolute accuracy was imposed. It is now clear that this constraint is 
not mandatory. The function z = f(s) may be given approximately, for example 
as a two-dimensional array, but in that case it should be given not only on the 
segment [A,, B,] of the real axis but also in the region of the s-plane containing all 
values of s needed for calculating the flow in the cavity. 

Note that if s ( z )  is considered as a potential of an auxiliary flow in the z-plane 
then the dividing streamline will be a portion of a streamline of that auxiliary flow. 
This interpretation simplifies the selection of a suitable f(s). It also demonstrates 
that prescribing W(z) ,  and, hence, the dividing streamline shape does not determine 
the cavity shape uniquely. Indeed, there are many different flows with portions of 
streamlines that coincide. Therefore, even for the shape of the dividing streamline 
given, f(s) can be varied to some extent. 

It is crucially important that an explicit expression for the potential W is not 
needed for using our result. The reason is that in deriving (3.3) it was possible to use 
the reflection principle, substituting W’(S) for W’(s), for analytic continuation of W 
through the cavity boundary. Hence, it is sufficient to calculate the potential of the 
flow outside the cavity numerically. This is an important advantage over the results 
of Abrashkin & Yakubovich (1988), who, assuming that W ( z )  is given explicitly, used 
the W-plane instead of the auxiliary s-plane introduced in this paper. 

Let us consider (3.4) in more detail. Note first that the coordinates of points A 
and B do not enter (3.4). This was to be expected on the basis of the following well- 
known property of analytic functions : an analytic function is uniquely determined 
by its behaviour in an arbitrary small vicinity of a single point. Therefore, if the 
flow described by (3.4) has a closed streamline, a portion of which coincides with 
the dividing streamline (hence, this closed streamline is the cavity boundary), then 
the location of the cavity edges is uniquely determined by W ( z )  and f(s). It is easily 
seen that the first term on the right-hand side of (3.4) describes a vortex flow with 
vorticity equal to w, and velocity equal to zero on the support curve. The second 
term on the right-hand side of (3.4) describes the potential flow with one of the 
streamlines coinciding with the portion of the body surface between A and B and 
with the velocity squared which is 2A smaller on that portion than the square of the 
velocity of the external potential flow. In particular, for A = 0 this flow is an analytic 
continuation of the external solution across the curve AB.  From (3.4) it follows in 
this case that in the immediate vicinity of the cavity edges the contribution from the 
vortex component is small. For this reason near these points the cavity wall is a 
reflection of the body surface from the support curve. For A > 0, in the case when 
the velocity of the internal flow does not equal zero at the cavity edges a similar 
conclusion can easily be proved by considering the asymptotics of (3.4) near these 
points. Therefore, the cavity wall branches from the support curve at a point where 
the body surface branches from this curve. From this result it also follows that the 
solution is univalent only if the support curve continues inside the body, as shown 
with a broken curve in figure 1. 

The cavity wall can also branch from the support curve at a point where the square 
of the velocity of the external flow equals 2A, and, correspondingly, the velocity of 
the internal flow equals zero. If the external flow velocity is not singular at that point 
then the asymptotics of the internal flow near that point follows directly from (3.4). 
It turns out that in this case the angle between the dividing streamline and the cavity 
wall equals 2n/3. 

Lastly, the cavity wall can branch from the support curve at a point where the 
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vortex flow represented by the first term on the right-hand side of (3.4) has a branch 
point. This rare case is not considered here. 

Therefore, if the given points A and B do not satisfy at least one of these restrictions 
then the cavity edges will not coincide with them, and the problem will have no 
solution. However, there can also be no solution for other reasons. 

First, it is possible that the cavity wall goes to another plane and crosses the body 
surface, in other words, the solution may be multi-valued. As already pointed out 
this is always the case if the support curve continues beyond the body at the cavity 
edge. However, it must not be ruled out that the calculated cavity wall may cross the 
body surface far from points A and B. 

Second, the calculated cavity may be not closed. The simplest example is the case 
f(s) = s, W’ = const., that is a uniform external flow above a straight surface, a 
portion of which may be considered as the dividing streamline. The flow in the cavity 
is then a simple shear flow independent of the longitudinal coordinate. 

Third, the flow may have singularities inside the cavity. There are two sources of 
singularities. In the s-plane the singularities of the potential W are reflected from the 
real axis giving singularities inside the cavity. For example, if the dividing streamline 
is a circular arc in the z-plane then at the centre of the circle a dipole is to be expected, 
which is the reflection of infinity in the external flow. Alternatively, the singularities 
of the conformal mapping of s onto z also produce singularities of the velocity. To 
be more specific, as the analysis of (3.4) shows, a singularity may (and probably will) 
appear at the point zo = f(so), if at this point s is singular as a function of z or if f(s) 
is singular at s = so. The dividing streamline can be approximated with very different 
functions f(s). This freedom may be used for eliminating singularities of the velocity 
inside the cavity. In figure 1 the support curve is a parabola, and its focus, which is 
marked with a star, is a singular point of the velocity field (3.4). Interestingly, there 
is a certain distortion of the cavity wall near this point. Note that if the singularity 
inside the cavity is a branch point then the solution is multi-valued. 

Two simple hints may be given concerning the dependence of the cavity shape on 
the parameters w and A. Let us suppose that the velocity of the external potential 
flow has a maximum U,,, at some internal point on the dividing streamline. Let 26 
be only slightly less than Ui,,. Then at a small distance in each direction from the 
maximum there are two points on the dividing streamline at which the square of the 
velocity of the external flow equals 26. Accordingly, the velocity of the internal flow 
equals zero at these points. When the cavity wall branches from the support curve 
at stagnation points of the internal flow the cavity edges coincide with the points at 
which the absolute values of the external flow velocity are equal. A decrease in A 
results in an increase in the cavity length, because these points move apart. 

If the vorticity w tends to infinity then far from points A and B the main term of 
the velocity is u, = -wn + h/2, where u, is the velocity component tangential to the 
dividing streamline, n is the coordinate along the normal to the dividing streamline, 
directed from the cavity, and h is the cavity depth. Since the velocity on the cavity 
boundary is of order one then h - l / w  for o + a. 

Expression (3.4) gives an exact solution in the case when the dividing streamline 
is given explicitly. In practice the body and, hence, the dividing streamline would 
often be given by a set of points. Through a finite number of fixed points an 
infinite number of explicit analytic curves (that is, curves like a support curve) can 
be drawn. (Note also, that an exact body shape may be non-analytic or it may be a 
combination of several portions of different analytic curves. Accordingly, outside the 
dividing streamline the support curve need not coincide with the body contour.) As 
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the problem is ill-posed, quite different cavities may result in almost identical shapes 
of the dividing streamline. For this reason the exact shape of the cavity is not defined 
uniquely or even approximately in the case when the dividing streamline is given by 
a set of points. Hence, the difference between the cavity shape obtained (for example, 
in a numerical calculation) and an exact solution cannot be an accuracy measure. 
Therefore, the only reasonable measure of the accuracy of the result is the difference 
between the dividing streamline obtained and the points given. 

Naturally, depending on the accuracy required, the support curve may be drawn 
not through the given points on the dividing streamline but sufficiently close to them 
as is in fact the case in the following section. 

4. Numerical calculation 
To check the method and for illustration purposes, and also for future applications, 

a program was written which calculates the flow past an airfoil with a cavity. The 
airfoil shape is prescribed in the following way. First, several points on the airfoil 
must be given, numbered clockwise: ZO,  z1,. . . , z,-1, z, in such a way that zo = z, is the 
sharp edge. Then the airfoil shape is assumed to be described by a cubic spline. More 
specifically, each airfoil segment between points zI-1, zl is described in the parametric 
form and 

z = Sl(P) = ml-l(l - PI3 + m1p3 + (ZI-1 - ml-l)(l - P )  + (ZI - mdp, 
Odpdl, 1 = 1 ,  ..., n. 

Here, the coefficients satisfy the system of equations 

mo = -mn, 
ml-1 + 4m1 + ml+l = Z I - 1  - 221 + zl+l, I = 1, .  . . ,n - 1,  

2m, - 2mo + mnPl - ml = znP1 - z l .  

This ensures that the airfoil surface is smooth and that its curvature is continuous. 
The trailing edge of the airfoil forms a cusp so that at the edge the velocity is not 
zero, and the curvatures of the upper and lower airfoil surfaces have equal values and 
different signs. The condition at the trailing edge can be easily modified, and some 
calculations, not presented here, were performed for airfoils with a finite angle at the 
edge. This method of defining the airfoil shape is quite flexible and makes it possible 
to describe easily airfoils of various shapes. 

Then one of the segments of this airfoil is replaced with an analytic support curve 
z = f ( s ) .  The specific form of this function is determined in a subroutine and can be 
easily varied. In particular, flows in figures 1-3 were calculated for 

z = f ( s )  = 2(zk - 2a + zk+l)s2 + (-3zk + 4a - zk+l)s + zk, (4.1) 

where 
a = Sk(0.5 + id). ( 4 4  

Here, k is the number of the substituted segment and 6 is a complex parameter. 
This expression describes a parabola passing through the segment ends and the point 
z = a. In some other calculations the support curve was a hyperbola or a curve 
described by an equation of the form z = C1 log(s - 6) + Cz. 

Each segment, including the dividing streamline, was then represented by a number 
of vortex panels for the calculation of the external potential flow. This flow was 
calculated using a version of the boundary-element method described by Kuethe & 
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FIGURE 2. Cavity shapes for different w, A = 1.1. The values of w are given near the curves. For 
w = -0.15 and -0.20 the cavity is not closed. 

Chow (1986), except that for solving the corresponding system of algebraic equations 
a more efficient Gauss method was used instead of the Cramer rule. The resulting 
solution satisfies the Kutta-Joukowski condition. The program described by Kuethe 
& Chow (1986) calculates the velocity distribution on the profile but modifying it for 
calculating the velocity in the entire flow field is so easy that it is not described here. 

The cavity 
shape was calculated approximately as a streamline passing very close to the cavity 
boundary. The calculations were performed in the s-plane using the second-order 
predictor-corrector method, starting from the point s = so - ie with a very small E .  

We cannot put E = 0 because the cavity edges are singularities of the velocity field 
and the streamlines branch there. In most of the calculations the values so = 0.5 
and E = 0.001 were used. 

The accuracy of the calculations depends on the number of panels used in the 
boundary-element method, the integration step in the calculation of the cavity shape, 
and E .  The program for calculating the potential flow was checked by comparison with 
the results of calculating flows past airfoils by other methods. The test calculations 
of the cavity wall shape were carried out with different integration step sizes. For 
sufficiently small steps the dependence of the results on the square of the integration 
step was found to be linear. This agrees with the second order of accuracy of the 
method. Calculations were performed for different E ,  and it was shown that for small E 

the results depend on E linearly. The information obtained in the test calculations 
was used to ensure that the error in figures 1-3 is within the graphical accuracy in 
the sense that further increase in the number of panels, decrease in the integration 
step, and decrease in 6 do not cause changes in the figures that could be seen with the 
naked eye. More detailed description of the test calculations is not necessary because 
the methods of our numerical calculations were, in fact, quite traditional. 

The advantage of our method is that varying A and o does not require additional 
computations of the external potential flow. Moreover, neither the potential flow 
computation nor integration along a streamline inside the cavity need large computer 
resources. 

The velocity inside the cavity can now be calculated from (3.4). 
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Calculations were carried out for a fixed airfoil and dividing streamline shape but 
for various A and co in an attempt to study the influence of these parameters on the 
cavity shape. The longitudinal size of the closed streamlines region depends on the 
vorticity only weakly. This is also true in the case when the position of the cavity 
edges is fixed by singularities as was discussed in the previous section. An increase in 
the absolute value of vorticity decreases the cavity depth. An increase in A reduces 
the size of the cavity while its length-to-depth ratio remains approximately constant. 
These results are illustrated in figures 2 and 3 where the cavity shapes for various A 
and o are given. Such results may depend on the airfoil and dividing streamline 
shape so that they must be used with caution. 

The integration along a streamline was always started between points A and B and 
continued until the streamline was closed, but if the cavity wall crossed the airfoil 
surface the integration had to be interrupted. 

The airfoil in figures 1-3 is determined by the following points zi : (31, -4), (14, -3), 
(0, -4), (-11, -4), (-18, -l), (-7,5), (9,4). The support curve is determined by (4.1) 
and (4.2) with k = 6 and 6 = 0.01. 

The research described in this publication was made possible in part by Grant 
No. M4K000 and Grant No. M4K300 from the International Science Foundation. 
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